Dataflow DSP Filter for ECG Signals

Ervin Domazet, Marjan Gusev and Sasko Ristov

Ss. Cyril and Methodius University, Faculty of Computer Science and Engineering,
1000 Skopje, Macedonia
e-mail: ervin_domazet@hotmail.com, {marjan.gushev, sashko.ristov} @finki.ukim.mk

Abstract—Electrocardiogram (ECG) signal analysis and
interpretation is achieved by Digital Signal Processing
(DSP). ECG signals usually are accompanied by a lot of
noise coming from several sources, including the noise
from environment (electrical switching power or other
related sources) or the internal noises generated by the
human breathing physical movement or similar sources.
DSP filters are essential in eliminating the noise and
extracting the essential characteristic signal. Afterwards,
the main ECG features can be detected and analyzed for
further determination of the complex heart condition. This
processing of the ECG signals is based on detecting the
hidden information and the subtle deviation of the heart
rhythm to alternating changes of the wave amplitude. In
some specific cases, real time analysis of heart signals
can save lives. Due to intensive data processing, sequential
algorithms are insufficient to run in real-time, especially
when a cloud data server processes thousands of data
streams coming from remote wearable ECG sensors.

In this research, we focus on parallelizing the sequential
DSP filter for processing of heart signals on dataflow cores.
Dataflow Computing is a completely different paradigm of
computing than conventional CPUs, where instructions are
parallelized across the available space, rather than time. It
is a revolutionary way for High Performance Computing
(HPC) solutions. Data streams are optimized by utilizing
thousands of dataflow cores, providing order of magnitude
speedups. We consider using Maxeler Systems for dataflow
computing. The performance of the parallelized code will
be compared to that of the sequential code. Our analysis
shows speedups linear to the kernel size of the filter.

Index Terms—DSP, ECG, Heart Signal, Parallelization,
Dataflow Computing, Maxeler.

I. INTRODUCTION

Electrocardiogram (ECGQG) is a stream of electric
impulses generated by the beating heart muscle.
They are detected by electrodes placed on human
skin, by measuring the electric potential that reaches
the skin surface [1]. ECG stream holds cardiovascu-
lar condition of the patient. Figure 1 reveals general

representation ECG signal with its representative P,
QRS and T waves.

Fig. 1. General Representation of ECG Signal.

Interpretation of an ECG stream is essential for a
better quality of life. Interpretation along with signal
analysis is achieved by Digital Signal Processing
(DSP) [2], [3]. Nevertheless, ECG signals are ex-
posed to noise that stem from several sources, vary-
ing from environment (electrical switching power,
radio waves or other related sources) to the internal
noises generated by the human breathing physical
movement or similar sources.

Precise interpretation and analysis of the ECG
signal can be achieved by eliminating the noise.
Essential data preprocessing phase is conducted by
the DSP filters. Hereinafter, the main ECG features
can be detected and analyzed for further determina-
tion of the complex heart condition. Processing of
the signal is based on detecting hidden information
and the subtle deviation of the heart rhythm to
alternating changes of the wave amplitude [4].

Lugovaya [5] had focussed on revealing the ef-
ficiency of an ECG signal for identification, when
compared to the three efficient biometric methods,
i.e identification based on fingerprints, iris or retina,
and face. Her experimental results showed that the
rate of correct identification was 96%, which gave
an insight for considering ECG signal as a new
biometric characteristic. What is more important,
she was successful in showing the persistence of
an individual’s ECG characteristics over time (slow

and gradual variations on ECG signal). This in turn
makes it possible to detect subtle deviations of the
heart rhythm and alternating changes of the wave
amplitude.

In some specific cases real time processing of the
ECG signal can save lives. Due to intensive data
processing, sequential algorithms are insufficient to
run in real-time, especially when a cloud data server
processes thousands of data streams coming from
remote wearable ECG sensors.

In this research, we focus on parallelizing the
sequential DSP filter for processing of the heart
signals on dataflow cores. The DSP filter is used
for preprocessing of the ECG data, in order to
eliminate noise from the ECG signal. Based on
the noise components of the ECG signal, several
filtering methods are available, such as Low pass,
High bass and Bandpass filter.

Dataflow Computing is a completely different
paradigm of computing than traditional CPUs. In-
structions are parallelized across the available space,
rather than time. It is a revolutionary way for High
Performance Computing (HPC) solutions[6], [7].
Data streams are optimized by utilizing thousands
of dataflow cores, providing order of magnitude
speedups. Maxeler systems are used for dataflow
computing [8]. The performance of the parallelized
code is compared to that of the sequential code. Our
analysis shows speedups linear to the kernel size of
the filter.

The paper is organized as follows Section II
presents DSP filters and convolution operators. In
Section V, we explain the way we have parallelized
the DSP filter by using Dataflow computing, namely
Maxeler systems. Results of timings and perfor-
mance figures of the parallelized code versus the
original sequential code are presented in Section IV.
Finally, the paper is concluded with a discussion and
future work in Section V.

II. DIGITAL SIGNAL PROCESSING

Digital Signal Processing (DSP) is the act of
manipulating signals with intention varying from
filtering, measuring to producing or compressing
analog signals. As the power of computers radically
increased during the last decades, so does the power
of the DSP [3]. DSP had made a tremendous impact

on science and engineering, by providing method-
ologies to deal with the most powerful technologies.

DSP had revolutionized many fields in sci-
ence and engineering. There are many industrial
sectors benefiting from the advancements on the
DSP field such as Medical, Military, Space and
Telephone. Electrocardiogram analysis, diagnostic
imaging, voice and data compression, radars, se-
cure communication, telephone signal filtering are
among the range of revolutionized fields.

The focus of our research is on ECG signal filter-
ing, with the intention to remove the noise that stem
from several sources. The commonly used method
in DSP filtering is the convolution, as one of the
most important techniques of signal processing. It is
defined as a mathematical operation that combines
the input stream and the impulse response in order
to generate a new output stream. In case of a filter,
the impulse response is known as a filter kernel.

Each value of the output stream in digital signal
convolution is represented as the sum of input
stream multiplied by set of weight coefficients,
which define the impulse response. The impulse
response is the signal that results when a delta
function (unit impulse) is the input in the DSP filter.

Denote by f(i) the weight (filter kernel) coef-
ficients in the range i € {—o0,+oo} if it is an
infinite response filter. We will use finite response
filters and the weight coefficients h(7) in the range
i €{0,...,M — 1}, where M is the filter length.
Let the input stream consists of elements z(:) and
the output stream of elements y(i), for i = 0,....
The convolution, as a mathematical operation can
be expressed by (1).

M-1
y(i) =Y h(j)z(i - j))
§=0
During this research, we have used the three clas-
sic filters to eliminate the noise: Low-Pass, High-
Pass and Band-Pass filters.

A. Low-Pass Filter

Low-pass filters are designed to thoroughly
weaken all the frequencies above the cutoff fre-
quency, known as a stopband, while passing all
frequencies below the passband [3]. These filters are
composed of stream of data items. All samples of

the output stream are in fact a weighted average of
the input with the adjacent points of low pass filter.
A simple low-pass filter is presented in Figure 2.

Amplitude (dB)

fc Frequency (Hz)

Fig. 2. Frequency response of a simple Low-pass
filter.

B. High-Pass Filter

A high-pass filter has opposite characteristics of
the low-pass filter. The effect of the filter is to
weaken the frequencies below the cutoff frequency
whereas passing all frequencies above the cutoff
frequency.

As in the case of Lowpass filter, the output is
generated with a weighted average of the adjacent
input stream. The response characteristics of a sim-
ple high-pass filter is presented in Figure 3.

Amplitude (dB)

fc Frequency (Hz)

Fig. 3. Frequency response of a simple High-pass
filter.

C. Band-Pass Filter

A band-pass filter is a composition of the high-
pass and low-pass filters. This type of filter passes
certain ranges of frequencies and rejects the fre-
quencies of the remaining region. The frequency
response of a simple band-pass filter is shown in
Figure 4.

Amplitude (dB)

fL fu

Frequency (Hz)

Fig. 4. Frequency response of a simple Band-pass
filter.

III. PARALLELIZATION FOR DATAFLOW
COMPUTING

Algorithm 1 presents the sequential version of
convolution of a one dimensional input with a
kernel. The complexity of the algorithm depends
on the input and kernel stream length, i.e O(nm).
When run on a CPU, the flow is sequential, meaning
that the inner loop length depends on the kernel size.
This flow is visualized in Figure 5.

Algorithm 1 Filtering algorithm

1: procedure CONVOLUTION(in, kernel, out)
2 140

3 while i < inputSize do

4: sum < 0

5: 7+0

6 while j < kernelSize do

7 sum <— sum +in[i — j| * kernel[j]
8 j—7+1

9: out[i] «— sum

10: 141+ 1

11: return out

Convolution - CPU

Begin
L J
Iterative
Y
Mext Input
item - b4

h

@ i

Fig. 5. Flow of sequential filtering algorithm.

In CPU computing, iterations are parallelized
across the available time, and performed sequen-
tially.

Dataflow is a completely different computing
paradigm compared to the traditional CPUs. Here,
the instructions are parallelized across the available
space, rather than time. Using this key feature, we
have achieved parallelization of kernel computing
via Dataflow cores. In this manner, iterative kernel
computation is massively parallelized. Depending
on the kernel size, up to thousands of dataflow cores
can be utilized synchronously, providing a speedup
with a higher order of magnitude. The proposed
solution is visualized in Figure 6.

Convolution - Dataflow
v
Maxeler
v
Item
Send Input
Stream k4
Parallel Weighted Sum
Get Qurpur |
Stream k
|
Stream
0

Fig. 6. Parallel Dataflow Computation algorithm.

IV. TESTS AND RESULTS

The sequential code is tested on an 8-core In-
tel(R) Xeon(R) X5647, 2.93 Ghz system with 12GB
of memory. On the other hand, parallelized code is
tested on a Maxeler simulator. Five different kernel
sizes are tested, and vice versa, for various length
ECG input signals.

A. Functional Verification

To verify the functional characteristics of the
execution of the sequential and parallel algorithms

we have provided several experiments. The input
was a short sequence of 500 samples of an ECG
signal with all characteristic P, Q, R, S and T waves,
as presented in Figure 7.

Figure 8 presents the effect of applying a low
pass filter on the ECG signal. One can notice that
the 50Hz noise is eliminated.

The effect of the high pass filter is presented in
Figure 9. The effect of this filter is elimination of
the baseline drift, caused by breathing and other
physical movements.

The effect of the band pass filter as a combination
of a low pass and high pass filter is presented in
Figure 10. This filter eliminates the baseline drift,
caused by breathing and other physical movements
and also the 50Hz noise caused by the electricity.

We have verified both the sequential and paral-
lelized solution and obtain identical results.

B. Speed-up Analysis

Speed-up is calculated by (2), where T is the
time required to process the sequential algorithm,
and 7}, is the time required to process the parallel al-
gorithm with p cores. Since the system clock on the
sequential machine is much higher than the system
clock on the parallel machine, we will compare the
number of sequential steps Ny (operations required
by the sequential algorithm) and the number of
processing steps NV, (operations required by the
parallel algorithm), by considering the sequential
system clock Cy and parallel device’s system clock
C,.

T, N, C,

Sp = =5 —
P T, T N, G,

2)

Note that for each input signal, the speedup
values are calculated by using 7 and 7T values
for the same input configuration. Hence, the main
reason for using these values is to compare the
performance of the sequential code on CPU and
the parallelized code on Maxeler Dataflow Engine
(DFE).

Sequential running code has mainly two phases:
the initialization and processing phases. Let the
input stream contains /N elements and the filter ker-
nel M elements. On initialization, the input stream
and filter kernel are transfered from the memory
to the CPU by a total of N + M memory access

o

PR N

0E

Fig. 7. A segment of an ECG signal with several QRS complexes.

0.8
0E
04
0.z

0.2
0.4
06

Fig. 8. The ECG signal filtered with a low pass filter of 30Hz.

0.8

°3§Aﬂ/\ Aﬂ,\ ,\n,\
2 TSI ~IFr— ~—

0.4
0.6

Fig. 10. The ECG signal filtered with a band pass filter between 0.5Hz and 30Hz.

operations and the N output elements are written
in the memory. Processing phase requires N * M
multiplications and N x M additions. Assuming that
each memory access, multiplication and addition
requires 1 processing step, the relation that shows
the total number of processing steps is presented in

3).

N, =2NM + 2N + M 3)

The number of operations for the parallel algo-
rithm is calculated differently. In addition to pro-
cessing, the dataflow engine needs to transfer data
from memory to device and return the results back,
which is equal to a total of N + N + M memory
access operations for the input and output stream,
and the filter kernel. The dataflow engine performs
operations on N samples concurrently in a pipelined
manner, so the processing takes /N processing steps
plus the pipeline length of the number of operations,
which is equal to the kernel length M. Note that
the summation can be realized in a tree parallel
organization, which will take only log, M steps, but
since we expect that N >> M it will not affect
the final result. So the total processing steps is
expressed by (4).

N,=2N+M+N+M=3N+2M (4

Table I presents the number of operations and
calculated speedup for our experiments where the
input contains 100.000 samples and kernel length
was 100, 500, 2000, 5000 and 7500. The sequential
machine clock was 2.93 GHz and the dataflow
Mazxeler device system clock 400 Mhz. The speedup
increases with the length of the kernel size.

V. DISCUSSION AND CONCLUSIONS

This work contributes Maxeler Dataflow paral-
lelization for noise filtering of ECG heart signals.
The provided parallel solution takes advantage of
thousands of Dataflow cores. Their size is increasing
linearly (according to the maximum number of
available space) depending on the kernel size used.

Results obtained by executing the sequential al-
gorithm and the parallel dataflow algorithm show
that the obtained results are identical for low-pass,
high-pass and band-pass filters.

TABLE 1. Speed-up analysis as the kernel size
increase.

No. Plat- In.put Ke.rnel Num. of Sp
form Size Size Opers.

1 g{;[é 100000 100 20%8?(1)88 9.19

2 gfl;g 100000 500 10058(1)888 45.45

3 (];l;lé 100000 2000 400?8‘2‘388 179.72

4 g?é 100000 5000 1000?1)8888 440.47

5 [CPU o000 | 7500 [1300207500 |0

The analysis shows that the speedup is propor-
tional to the filter length. In this research we have
experimented with the Hamming window and the
Blackman window with length of 100 and 200
elements to obtain relatively good results.

This research is the first step of the ECG signal
processing with the intention to extract hidden infor-
mation. As the next work we plan to parallelize the
Wavelet Transformation sequential code for Maxeler
Dataflow.

As future work, we plan to carry out more tests
on Maxeler DFE with higher available space. We
believe that the parallelized code will scale linearly
with increasing filter size.

REFERENCES

[1] P.D.Khandait, N. Bawane, and S.S.Limaye, “Article: Features ex-
traction of ecg signal for detection of cardiac arrhythmias,” IJCA
Proceedings on National Conference on Innovative Paradigms in
Engineering and Technology (NCIPET 2012), vol. ncipet, no. 8,
pp. 6-10, March 2012, full text available.

[2] A. Antoniou, Digital signal processing. McGraw-Hill Toronto,
Canada:, 2006.

[3] S. W. Smith, Digital signal processing: a practical guide for
engineers and scientists. Newnes, 2003.

[4] R. Acharya, S. M. Krishnan, J. A. Spaan, and J. S. Suri, Advances
in cardiac signal processing. Springer, 2007.

[5S] T. S. Lugovaya, “Biometric human identification based on ecg,”
2005.

[6] J. A. Sharp, Data flow computing: theory and practice. Intellect
Books, 1992.

[71 M.J. Flynn, O. Pell, and O. Mencer, “Dataflow supercomputing,”
in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. 1EEE, 2012, pp. 1-3.

[8] “Maxeler dataflow computing,” https://www.maxeler.com/
technology/dataflow-computing/, last visited on 26.03.2016.

